Arduino temperatur, flow og mengdemåler til skyllevann.

Et lite eksperiment.
Jeg er ikke sikker på om jeg kommer til å bygge denne ferdig, men prototypen virker på bordet.
Jeg har laget en tilsvarende for PLS styring. Kalibrering gjorde jeg med ei vekt og stoppeklokke.  Fylte 10 liter vann og så var det enkelt å se hvor mange pulser dette ble, og regne ut pulser pr liter.

Flowmeter, arduino, DS18B20.
Flowmeter, arduino, DS18B20.
Bolt i dreibenk, ute av senter.
Bolt i dreibenk, ute av senter.
Dreie stusser, borre hull.
Dreie stusser, borre hull.
Fjerne unødvendig materiale. Hull til føler.
Fjerne unødvendig materiale. Hull til føler.

Koden er funnet på nettet og noe modifisert:

// Get 1-wire Library here: http://www.pjrc.com/teensy/td_libs_OneWire.html
#include <OneWire.h>
//Get DallasTemperature Library here:  http://milesburton.com/Main_Page?title=Dallas_Temperature_Control_Library
#include <DallasTemperature.h>
#include <SPI.h>
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,20,4);  // set the LCD address to 0x27 for a 20 chars and 4 line display
//koblinger SDA->analog 4, SCL->analog A5. 5V og jord.
#define ONE_WIRE_BUS_PIN 3
/*—–( Declare objects )—–*/
// Setup a oneWire instance to communicate with any OneWire devices
OneWire oneWire(ONE_WIRE_BUS_PIN);
// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);
/*—–( Declare Variables )—–*/
// Assign the addresses of your 1-Wire temp sensors.
// See the tutorial on how to obtain these addresses:
// http://www.hacktronics.com/Tutorials/arduino-1-wire-address-finder.html

DeviceAddress T1 = { 0x28, 0x6C, 0x30, 0x5D, 0x06, 0x00, 0x00, 0xB0 };

/**
* Water Flow Gauge
*
* Uses a hall-effect flow sensor to measure the rate of water flow and
* output it via the serial connection once per second.
*
* Copyright 2009 Jonathan Oxer <jon@oxer.com.au>
* Copyright 2009 Hugh Blemings <hugh@blemings.org>
*
*Endret av Frank Dåstøl til å bruke serie LCD og Dallas temperatursensor
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version. http://www.gnu.org/licenses/
*
* http://www.practicalarduino.com/projects/water-flow-gauge
*/

// Specify the pins for the two counter reset buttons and indicator LED
byte resetButtonA = 11;
byte resetButtonB = 12;
byte statusLed    = 13;

byte sensorInterrupt = 0;  // 0 = pin 2; 1 = pin 3
byte sensorPin       = 2;

// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 4.5;

volatile byte pulseCount;

float flowRate;
unsigned int flowMilliLitres;
unsigned long totalMilliLitresA;
unsigned long totalMilliLitresB;

unsigned long oldTime;

void setup()
{
sensors.begin();
// set the resolution to 10 bit (Can be 9 to 12 bits .. lower is faster)
sensors.setResolution(T1, 10); //Probe 03:9
lcd.init();                    // initialize the lcd
// Print a message to the LCD.
lcd.backlight();
lcd.begin(16, 2);
lcd.setCursor(0, 0);
lcd.print(»                «);
lcd.setCursor(0, 1);
lcd.print(»                «);

// Initialize a serial connection for reporting values to the host
Serial.begin(38400);

// Set up the status LED line as an output
pinMode(statusLed, OUTPUT);
digitalWrite(statusLed, HIGH);  // We have an active-low LED attached

// Set up the pair of counter reset buttons and activate internal pull-up resistors
pinMode(resetButtonA, INPUT);
digitalWrite(resetButtonA, HIGH);
pinMode(resetButtonB, INPUT);
digitalWrite(resetButtonB, HIGH);

pinMode(sensorPin, INPUT);
digitalWrite(sensorPin, HIGH);

pulseCount        = 0;
flowRate          = 0.0;
flowMilliLitres   = 0;
totalMilliLitresA = 0;
totalMilliLitresB = 0;
oldTime           = 0;

// The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
// Configured to trigger on a FALLING state change (transition from HIGH
// state to LOW state)
attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
}

/**
* Main program loop
*/
void loop()
{
sensors.requestTemperatures();
// Deklarerer variabler og legger inn temp.

double skvann = 0;
skvann = sensors.getTempC(T1);//Probe 03:09

if(digitalRead(resetButtonA) == LOW)
{
totalMilliLitresA = 0;
lcd.setCursor(0, 1);
lcd.print(«0L      «);
}
if(digitalRead(resetButtonB) == LOW)
{
totalMilliLitresB = 0;
lcd.setCursor(8, 1);
lcd.print(«0L      «);
}

if( (digitalRead(resetButtonA) == LOW) || (digitalRead(resetButtonB) == LOW) )
{
digitalWrite(statusLed, LOW);
} else {
digitalWrite(statusLed, HIGH);
}

if((millis() – oldTime) > 1000)    // Only process counters once per second
{
// Disable the interrupt while calculating flow rate and sending the value to
// the host
detachInterrupt(sensorInterrupt);
//lcd.setCursor(15, 0);
//lcd.print(«*»);

// Because this loop may not complete in exactly 1 second intervals we calculate
// the number of milliseconds that have passed since the last execution and use
// that to scale the output. We also apply the calibrationFactor to scale the output
// based on the number of pulses per second per units of measure (litres/minute in
// this case) coming from the sensor.
flowRate = ((1000.0 / (millis() – oldTime)) * pulseCount) / calibrationFactor;

// Note the time this processing pass was executed. Note that because we’ve
// disabled interrupts the millis() function won’t actually be incrementing right
// at this point, but it will still return the value it was set to just before
// interrupts went away.
oldTime = millis();

// Divide the flow rate in litres/minute by 60 to determine how many litres have
// passed through the sensor in this 1 second interval, then multiply by 1000 to
// convert to millilitres.
flowMilliLitres = (flowRate / 60) * 1000;

// Add the millilitres passed in this second to the cumulative total
totalMilliLitresA += flowMilliLitres;
totalMilliLitresB += flowMilliLitres;

// During testing it can be useful to output the literal pulse count value so you
// can compare that and the calculated flow rate against the data sheets for the
// flow sensor. Uncomment the following two lines to display the count value.
//Serial.print(pulseCount, DEC);
//Serial.print(»  «);

// Write the calculated value to the serial port. Because we want to output a
// floating point value and print() can’t handle floats we have to do some trickery
// to output the whole number part, then a decimal point, then the fractional part.
unsigned int frac;

// Print the flow rate for this second in litres / minute
Serial.print(int(flowRate));  // Print the integer part of the variable
Serial.print(«.»);             // Print the decimal point
// Determine the fractional part. The 10 multiplier gives us 1 decimal place.
frac = (flowRate – int(flowRate)) * 10;
Serial.print(frac, DEC) ;      // Print the fractional part of the variable

// Print the number of litres flowed in this second
Serial.print(» «);             // Output separator
Serial.print(flowMilliLitres);

// Print the cumulative total of litres flowed since starting
Serial.print(» «);             // Output separator
Serial.print(totalMilliLitresA);
Serial.print(» «);             // Output separator
Serial.println(totalMilliLitresB);

lcd.setCursor(0, 0);
lcd.print(»                «);
lcd.setCursor(0, 0);
lcd.print(«Flow: «);
if(int(flowRate) < 10)
{
lcd.print(» «);
}
lcd.print((int)flowRate);   // Print the integer part of the variable
lcd.print(‘.’);             // Print the decimal point
lcd.print(frac, DEC) ;      // Print the fractional part of the variable
lcd.print(» L»);
lcd.print(«/min»);

lcd.setCursor(0, 1);
lcd.print(int(totalMilliLitresA / 100));
lcd.setCursor(3, 1);
lcd.print(«Dl»);
lcd.setCursor(8, 1);
lcd.print(int(totalMilliLitresB / 100));
lcd.setCursor(10, 1);
lcd.print(«Dl»);
lcd.setCursor(0, 2);
lcd.print(«Temperatur :»);
lcd.print(skvann);

// Reset the pulse counter so we can start incrementing again
pulseCount = 0;

// Enable the interrupt again now that we’ve finished sending output
attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
}
}

/**
* Invoked by interrupt0 once per rotation of the hall-effect sensor. Interrupt
* handlers should be kept as small as possible so they return quickly.
*/
void pulseCounter()
{
// Increment the pulse counter
pulseCount++;
}
void printTemperature(DeviceAddress deviceAddress)
{

double tempC = sensors.getTempC(deviceAddress);

if (tempC == -127.00)
{
Serial.print(«0.01»);
}
else
{
Serial.print(tempC);
}
}// End printTemperature
//*********( THE END )***********

Komponenter:
Arduino UNO eventuelt et starterkit med masse gøy.
Flowmeter HALL Fornuftig å velge et som går på 5V slik at man slipper ekstra strømforsyning.
LCD panel. har valgt Serial for å ikke bruke opp alle inngangene/utgangene på arduinoen.
Og så trenger man 4,7K og 1K motstander.
2 Knapper for å resette telleverket.

Legg igjen en kommentar

Fyll inn i feltene under, eller klikk på et ikon for å logge inn:

WordPress.com-logo

Du kommenterer med bruk av din WordPress.com konto. Logg ut /  Endre )

Google+-bilde

Du kommenterer med bruk av din Google+ konto. Logg ut /  Endre )

Twitter-bilde

Du kommenterer med bruk av din Twitter konto. Logg ut /  Endre )

Facebookbilde

Du kommenterer med bruk av din Facebook konto. Logg ut /  Endre )

w

Kobler til %s